摘要
海草是一种高等开花植物,作为浅海海域的主要初级生产者之一,海草可以大面积堆积形成海草床,海草床生态系统具有较高的生物量和生产力,与珊瑚礁生态系统、红树林生态系统并称为三大典型海洋生态系统,海草床具有重要的生态功能,在泥沙捕获、防风、水质改善、碳固存等过程中发挥着重要作用。然而自20世纪80年代以来,由于自然因素和人为因素的影响,海草床处于持续衰退的状态,全球每年约有110km 2的海草床退化,根据目前的统计,已有近1/3的草床消失。本文对海草床的主要修复技术,包括生境法、种子法和移植法进行了总结,并比较了各种方法的优缺点,以期为海草床修复提供一些参考建议。
关键词: 海草床;生态功能;残化;修复技术
Abstract
Seagrass is a kind of higher flowering plant, as one of the main primary producers of shallow sea waters, seagrass can be accumulated in a large area to form seagrass beds, seagrass bed ecosystems have high biomass and productivity, and coral reef ecosystems and mangrove ecosystems are called three typical marine ecosystems, seagrass beds have important ecological functions, in sediment capture, wind breaking, water quality, carbon sequestration and other important roles. However, since the 80s of the 20th century, due to the influence of natural factors and human factors, seagrass beds are in a state of continuous decline, and about 110km2 of seagrass beds in the world are degraded every year, and nearly 1/3 of the grass beds have disappeared according to current statistics. In this paper, the main restoration technologies of seagrass beds, including habitat method, seed method and transplantation method, are summarized, and the advantages and disadvantages of various methods are compared, in order to provide some reference suggestions for seagrass restoration.
Key words: Seagrass bed; Ecological function; Vestigial; Repair technology
参考文献 References
[1] Yang Zongdai. Ecology of seagrass in China[J]. Marine Science, 1982, (02): 34-7.
[2] LINA M N, W K E, B B E, et al. Seagrass Ecosystem Services and Their Variability across Genera and Geographical Regions [J]. PloS one, 2016, 11(10).
[3] SHORT F, CARRUTHERS T, DENNISON W, et al. Global seagrass distribution and diversity: A bioregional model [J]. Journal of Experimental Marine Biology and Ecology, 2007, 350(1).
[4] Zheng Fengying, Qiu Guanglong, Fan Hangqing, et al. Diversity, distribution and conservation of seagrass in China [J]. Biodiv Sci, 2013, 21(05): 517-26.
[5] LI Wentao, ZHANG Xiumei. Ecological function of seagrass pasture [J]. Journal of Ocean University of China: Natural Science Edition, 2009, (5): 7.
[6] BOS A R, BOUMA T J, KORT G L J D, et al. Ecosystem engineering by annual intertidal seagrass beds: Sediment accretion and modification [J]. Estuarine, Coastal and Shelf Science, 2007, 74(1).
[7] QIU Guanglong, LIN Xingzhu, LI Zongshan, et al. Carbon sequestration mechanism and contribution of seagrass ecosystems [J]. Chinese Journal of Applied Ecology, 2014, 25(6): 1825-32.
[8] MICHELLE W, M D C, B C T J, et al. Accelerating loss of seagrasses across the globe threatens coastal ecosystems [J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(30).
[9] SHORT F T, WYLLIE-ECHEVERRIA S. Natural and human-induced disturbance of seagrasses [J]. Environmental Conservation, 1996, 23(1).
[10] World atlas of seagrasses [J]. Botanica Marina, 2004, 47(3).
[11] MARTINS I, NETO J M, FONTES M G, et al. Seasonal variation in short-term survival of Zostera noltii transplants in a declining meadow in Portugal [J]. Aquatic Botany, 2005, 82(2).
[12] D.I W, A.J M. Seagrass degradation in Australian coastal waters [J]. Marine Pollution Bulletin, 1992, 25(5-8).
[13] ZHOU Kaiya, XU Xinrong, TANG Jinsong. Investigation of Dugong status in Beibu Gulf and Indian Ocean white dolphin [J]. Acta Veterinary Sinica, 2003, (01): 21-6.
[14] Zhang, Y.S.; Silliman, B.R. A Facilitation Cascade Enhances Local Biodiversity in Seagrass Beds. Diversity 2019, 11, 30. https://doi.org/10.3390/d11030030.
[15] Lee, C.-L.; Lin, W.-J.; Liu, P.-J.; Shao, K.-T.; Lin, H.-J. Highly Productive Tropical Seagrass Beds Support Diverse Consumers and a Large Organic Carbon Pool in the Sediments. Diversity 2021, 13, 544. https://doi.org/ 10.3390/ d13110544.
[16] Price, D.M.; Felgate, S.L.; Huvenne, V.A.I.; Strong, J.; Carpenter, S.; Barry, C.; Lichtschlag, A.; Sanders, R.; Carrias, A.; Young, A.; et al. Quantifying the Intra-Habitat Variation of Seagrass Beds with Unoccupied Aerial Vehicles (UAVs). Remote Sens. 2022, 14, 480. https://doi.org/10.3390/rs14030480.